FOUR YEAR UNDERGRADUATE PROGRAM (2024 – 28) DEPARTMENT OF INDUSTRIAL CHEMISTRY COURSE CURRICULUM | P | AR | T- A: In | ntroductio | n | | | |----|----------|--|---|--|---|---------------| | | _ | am: Bachelor in | | Semester - II | Session: 2024-20 | 025 | | 1 | | urse Code | ICSC-02T | | | | | 2 | Co | ourse Title INDUSTRIAL OPERATIONS, FUELS AND ASPECTS OF PHYSICAL CHEMISTRY | | | | | | 3 | Co | ourse Type DSC | | | | | | 4 | Pr | e-requisite (if, any) | As per program | | | | | 5 | | ourse Learning.
utcomes (CLO) | Analyze the properties, advantages, and limitations of various fuel types and their combustion processes. Evaluate the composition, refining processes, and applications of petroleum products and alternative fuels. Explain the principles and technologies involved in boiler operation, water treatment, and fluid flow systems. Differentiate between homogeneous and heterogeneous catalysis, exploring their applications in industrial reactions and enzyme-mediate processes. | | | | | 6 | Cı | redit Value | 3 Credits | Credit = 15 Hour | rs - learning & Observa | | | 7 | To | otal Marks | Max. Marks: | 100 | Min Passing Marks: | 40 | | - | | | | | | | | PA | RT | | nt of the C | | **** | urs) | | | nit | | ching-learning | ourse Periods (01 Hr. per periopics (Course content | iod) - 45 Periods (45 Ho | No. of | | U | nit
I | Fuel Chemistry: [A] Fuel - Types of calorific value [B] Petroleum: Corproducts and their aron petroleum fuels Cracking, reforming | fuels, advantage mposition of cruc pplications, frac - CNG, LNG, bid y, hydro forming. | Periods (01 Hr. per periods) opics (Course content) s and disadvantages, comb de petroleum, refining and tional distillation of crude ogas, fuels from biomass a sisomerization. | s) oustion of fuels, petroleum oil, natural gas, nd wastes. | No. of | | U | nit
I | Fuel Chemistry: [A] Fuel - Types of calorific value [B] Petroleum: Corproducts and their anon petroleum fuels Cracking, reforming [C] Coal: Types, str. [A] Boilers Classification of book (fuel-fired, electric) (Lancashire boiler, LaMont boiler), High [B] Water Treatment Methods of Water Pre-treatment methods of Water Pre-treatment methods of Lancashire boiler, and the case of the company | fuels, advantage fuels, advantage mposition of cruc pplications, frac c-CNG, LNG, bic g, hydro forming, ructure, propertie illers based on: W , Steam generation Cornish boiler), gh-pressure boile ent Treatment: ods: Sedimentation a process), Degan | Periods (01 Hr. per periods) (Course content opics (Course content opics) (Course opic | biod) - 45 Periods (45 Hos) Fustion of fuels, petroleum oil, natural gas, nd wastes. micals derived from coal lium, high), Heat source Fire-tube boilers ck & Wilcox boiler, c boilers. | No. of Perio | | U | nit
I | Fuel Chemistry: [A] Fuel - Types of calorific value [B] Petroleum: Corproducts and their areas non petroleum fuels Cracking, reforming [C] Coal: Types, str. [A] Boilers Classification of book (fuel-fired, electric) (Lancashire boiler, LaMont boiler), High Water Treatment Methods of Water Pre-treatment methods are the exchange, lime-sod Internal treatment in phosphate dosing) [A] Fluid Flow: Fa | fuels, advantage mposition of cruc pplications, frac c-CNG, LNG, bic g, hydro forming, ructure, propertie illers based on: W , Steam generation Cornish boiler), gh-pressure boile ent Treatment: ods: Sedimentation a process), Deganethods: Boiler v ms, blowers, com | Periods (01 Hr. per periods) (Course content opics (Course content opics) (Course opic | biod) - 45 Periods (45 Hos) Fustion of fuels, petroleum oil, natural gas, and wastes. Inicals derived from coal Itium, high), Heat source Fire-tube boilers ok & Wilcox boiler, ox boilers. In techniques (ion emicals (blowdown, ejector. | No. of Period | In dira Bati 2 108h my Solvier principles, Mechanisms, factors affecting the performance. [B] Enzyme catalysis - Rate model, industrially important reactions Fuel Types, Combustion, Petroleum Refining, Alternative Fuels, Boilers, Water Treatment, Fluid Flow, Catalysis, Enzymes Signature of Convener & Members (CBoS): #### PART-C: **Learning Resources** Text Books, Reference Books and Others Text Books Recommended - - 1. Vermani, O. P., & Narula, A. K. (2007). Industrial Chemistry. Galgotia Publications Pvt. Ltd. - 2. Bhatia, S. C. (2014). Chemical Process Industries, Vol. I & II. CBS Publishers. - 3. Jain, P. C., & Jain, M. (2012). Engineering Chemistry. Dhanpat Rai & Sons. - 4. Gopalan, R., Venkappayya, D., & Nagarajan, S. (2016). Engineering Chemistry. Vikas Publication. - 5. Sharma, B. K. (2018). Engineering Chemistry. Goel Publishing House. - 6. Sharma, B. K. (2019). Industrial Chemistry. Goel Publishing House. - 7. Puri, B. R., & Sharma, L. R. (2016). Physical Chemistry. Goel Publishing House. ### Reference Books Recommended - - 1. Stocchi, E. (Vol. 1). Industrial chemistry. Ellis Horwood Ltd. - 2. Felder, R. M., & Rousseau, R. W. (2007). Elementary principles of chemical processes, Wiley ### Online Resources- ### e-Resources / e-books and e-learning portals - https://www.energy.gov/ - https://www.eia.gov/ - https://science.howstuffworks.com/environmental/energy/oil-refining.htm - https://www.eia.gov/coal/ - https://www1.grc.nasa.gov/research-and-engineering/ - https://learncheme.com/ - > https://www.nationalboard.org/ - https://www.asme.org/getmedia/c041390f-6d23-4bf9-a953-646127cfbd51/asme-bpvcbrochure-webview.pdf: ### Online Resources- Exam (ESE): > e-Resources / e-books and e-learning portals #### PART -D: Assessment and Evaluation Suggested Continuous Evaluation Methods: 100 Marks **Maximum Marks:** Continuous Internal Assessment (CIA): 30 Marks 70 Marks End Semester Exam (ESE): Continuous Internal Internal Test / Quiz-(2): 20 20 Better marks out of the two Test / Quiz Assignment / Seminar -10 + obtained marks in Assignment shall be Assessment (CIA): 30 Total Marks considered against 30 Marks (By Course Teacher) Two section - A & B **End Semester** Section A: Q1. Objective -10 x1 = 10 Mark; Q2. Short answer type- 5x4 = 20 Name and Signature/of Convener & Members of CBoS: Marks Marks Section B: Descriptive answer type qts., 1 out of 2 from each unit-4x10=40 # FOUR YEAR UNDERGRADUATE PROGRAM (2024 – 28) DEPARTMENT OF INDUSTRIAL CHEMISTRY COURSE CURRICULUM | COOKSE COMMISCOLOM | | | | | | | |--------------------|--|---|---|--|--------------------------|---------| | P | ART- | A: Intro | duction | | | - | | Pr | ogram: | Bachelor in Scient | ence | Semester - II | Session: 2024 - | 2025 | | | | / Diploma / Degree/I | | | | , | | 1 | Course | | ICSC-02P | | | | | 2 | Course | Title | INDUSTRIAL CHEMISTRY LAB. COURSE-II | | | | | 3 | Course | Type | DSC | | | | | 4 | Pre-rec | quisite (if, any) | As per program | | | | | 5 | 5 Course Learning.
Outcomes (CLO) | | Understand the theoretical principles behind various purification techniques. Apply crystallization, distillation, and extraction methods in the laboratory for sample purification. Analyze boiling point diagrams and interpret data from physical constant measurements. Perform basic experiments to detect food adulteration. | | | | | 6 | Credit | E7 (MANAGEMENT) | learning/Training | | | | | 7 Total Marks | | | Max. Marks: 50 Min Passing Marks: 20 | | | | | PA | RT -B | | f the Cour | | 20 D 1 1 (20 H | | | | | Total No. of lea | | g/performance Periods: | | No. of | | Module | | | | ics (Course contents) | | Period | | Tr
Exp
Co | ab./Field
raining/
periment
ontents
Course | Distillation, Fraction
Extraction Processes
Depression and electoric analysis dolom
Analysis of alloys son Determination of Processes and Study, experiments | nal Distillation, is-Phase diagram vation in B.P. /Mite, limestone-cauch as cupro-nichysical constants ace tension, visc ity, optical rotation | ckel.
s: refractive-index, surfac
osity, fluids, polymer solu
on. | e tension, effect of | 30 | | Keywords | | Detection of food adulteration. Laboratory Techniques, Extraction, Ores analysis, Physical Constants, Food Adulteration | | | | | | K | eyworas | Laboratory Techni | ques, Extraction, | Ores unalysis, Physical Co | msiams, 1 oou Auditerati | · · · · | Signature of Convener & Members (CBoS): The Col My ## PART-C: Learning Resources # Text Books, Reference Books and Others ## Text Books Recommended - - 1. Ahluwalia, V. K., & Aggarwal, R. (2000). Comprehensive practical organic chemistry: Preparations and quantitative analysis, Universities Press - 2. Vishnoi, N. K. (2010). Advanced practical organic chemistry (3rd ed.). Vikas Publishing House. ### Text Books Recommended - - 1. Vogel, A. I. (2012). Vogel's textbook of practical organic chemistry. Pearson Education. - 2. Klein, D. R. (2012). Experimental organic chemistry. John Wiley & Sons. - 3. Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (2013). Fundamentals of analytical chemistry. Brooks/Cole. - 4. Nielsen, S. S. (2010). Food analysis laboratory manual. Food Science Text Series. ## Online Resources- - > https://chem.libretexts.org/ - > https://www.khanacademy.org/science/chemistry - https://www.chemguide.co.uk/ - > https://pubs.acs.org/journal/ancham - > https://www.azom.com/ - > https://www.virtualchemlab.com/ - https://www.sciencebuddies.org/science-fair-projects/references/science-fair-materials/measuring-food-adulteration | muter micromensus and | | | | | | | | |--|---|--------------------------------------|------------|--|--|--|--| | PART -D: Assessment and Evaluation | | | | | | | | | Suggested Continuous Evaluation Methods: | | | | | | | | | Maximum Marks: | 50 Marks | | | | | | | | Continuous Internal Assessm | nent (CIA): 15 Marks | | | | | | | | End Semester Exam (ESE): | 35 Marks | <u> </u> | | | | | | | Continuous Internal | Internal Test / Quiz-(2): 10 🙇 | Better marks out of the two Test / 0 | | | | | | | Assessment (CIA): | 10 | + obtained marks in A | | | | | | | (By Course Teacher) | Assignment/Seminar +Attendance - | be considered against 15 Marks | | | | | | | | 05 | | | | | | | | | Total Marks - | | | | | | | | | 15 | | | | | | | | End Semester Exam | Laboratory / Field Skill Performa | ince: On spot | Managed by | | | | | | (ESE): | Assessment | Course | | | | | | | (ESE). | D. Performed the Task based on I | teacher as per
lab. status | | | | | | | | IVIAIRS | | | | | | | | | E. Spotting based on tools & technology (written) – 10 | | | | | | | | | Marks F. Viva-voce (based on principle/technology) - 05 | | | | | | | | | F. Viva-voce (based on principle/ | | | | | | | | Marks | | | | | | | | Name and Signature of Convener & Members of CBoS: V4 4 Almie & glaid Jun