FOUR YEAR UNDERGRADUATE PROGRAM (2024 – 28) DEPARTMENT OF MICROBIOLOGY COURSE CURRICULUM

PART	PART – A: Introduction				
Program: Bachelor in Life Science (Honors/ Honors with Research)		Semester - VIII		Session: 2024-25	
1	Course Code	MBSC-08 T	7		
2	Course Title	Environme	ntal Microbiolo	gy and M	Aicrobial Ecology
3	Course Type	DSC			
4	Prerequisite (If Any)	As per Prog	gram		
5	Course Learning	At the end of this course the student will able to –			
	Outcomes (CLO)	> relate different types of environments and their habitats			
		> explain the extremophiles			
		identify the role microorganisms in solid/liquid waste management			
		> compare beneficial and harmful microbial interactions			
	,	examine biogeochemical cycles and their importance			
6	Credit Value	03 Credits	Credit = 15 Ho	urs - Lear	rning & Observation
7	Total Marks	Max. M	(arks: 100	Min	imum Passing marks: 40

PART – B: Content of the Course

Total No. of Teaching-Learning Periods (01 Hr. per period) - 45 Periods (45 Hours)

Unit	Topics (Course contents)		
I	Microorganisms of different habitats: Terrestrial Environment - Soil profile and soil microflora; Aquatic Environment - Microflora of fresh water and marine habitats; Air Atmosphere - Aeromicroflora and dispersal of microbes; Animal Environment - Microbes in/on human body (microbiomics) & animal (ruminants) body; Extreme Habitats - Extremophiles, Microbes thriving at high & low temperatures, pH, high hydrostatic & osmotic pressures, salinity and low nutrient levels.		
II	Waste management: Sources and types of solid waste, Methods of solid waste disposal (Composting and sanitary landfill). Composition of Liquid waste, strength of sewage (BOD and COD), Primary, secondary (oxidation ponds, trickling filter, activated sludge process and septic tank) and tertiary sewage treatment		
III	Ecosystems: Structure, types and roll of microorganisms in ecosystems. Biological Interaction: Microbe-Microbe Interactions: Mutualism, Synergism, Commensalism, Competition, Amensalism, Parasitism, Predation; Biocontrol agents; Microbe-Plant Interactions: Roots, Aerial Plant surfaces.	11	
IV	Biogeochemical Cycles: Carbon cycle - Microbial degradation of cellulose, hemicelluloses, lignin and chitin; Nitrogen cycle - Biological Nitrogen fixation (symbiotic/nonsymbiotic), ammonification, nitrification, denitrification and nitrate reduction; Phosphorus cycle - Phosphate immobilization and solubilisation; Sulphur cycle - Microbes involved in sulphur cycle.	11	
Key Words	Terrestrial Microflora, Aquatic Microflora, Aeromicroflora, Extremophiles, Waste management, Biological Interactions, Biogeochemical Cycles		

Name and Signature of Convener and Members of CBoS

10.6.2

10.6.24

Dr. Nelson Xe

Dank 24

Tolelan

Part - C: Learning Resources

Text Books, Reference Books and Others

Text Books Recommended:

- 1. Text book of Microbiology; R.P. Singh, Kalyani publication.
- 2. General microbiology; Vol. I and Vol. II, Power and Daginawala, Himalaya Publication.
- 3. Microbiology; Pelczar, MJ Chan ECS and Krieg NR, McGraw-Hill.

Reference Books:

- 1. Prescott's Microbiology. Wiley J M, Sherwood L M and Woolverton C J.
- 2. Microbiology; Tortora, Funke, Case. Pearson Benjamin Cummings.
- 3. Microbial Ecology; Alexander, M John. Wiley & Sons, Inc., New York.

Online Resources - e-Resources/ e-Books and e- learning portals

- https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SMB2101.pdf
- https://kamarajcollege.ac.in/wp-content/uploads/Core-IX-Environmental-Microbiology.pdf
- https://nou.edu.ng/coursewarecontent/BIO320 0.pdf

Two Section - A & B

- https://content.e-bookshelf.de/media/reading/L-12090079-7c15e330d2.pdf
- https://booksite.elsevier.com/samplechapters/9780123705198/Sample Chapters/01~Front Matter.pdf

Part - D: Assessment and Evaluation

Suggested	Continuous	Evaluation	Methods:
-----------	------------	-------------------	----------

Maximum Marks:

100 Marks

Continuous Internal Assessment (CIA):

30 Marks

End Semester Exam (ESE):

70 Marks

Continuous Internal

Internal Test / Quiz – (2): 20+20

Better marks out of the two Test/ Quiz

Assessment (CIA):

Assignment/ Seminar – 10

+ obtained marks in Assignment shall

be considered against 30 Marks

(By Course Teacher)

Total Marks –

End Semester

Exam (ESE):

Section A: Q1. Objective $10 \times 1 = 10 \text{ Mark}$; Q2. Short answer type $-5 \times 4 = 20 \text{ Marks}$

| _

Section B: Descriptive answer type qts., 1 out of 2 from each unit -4X10 = 40 Marks

30

Name and Signature of Convener and Members of CBoS

ladland 1

Jun. 10.6.24

Roshmi 10.6.24

10.6.24

Dant. C. 24

16/24 Junical

Dr. Nelbon)

Man

DRX V Potel

FOUR YEAR UNDERGRADUATE PROGRAM (2024 – 28) DEPARTMENT OF MICROBIOLOGY · COURSE CURRICULUM

PART	T-A: Introdu	ction		,	
Program: Bachelor in Life Science (Honors/ Honors with Research)		Semester VIII		Session: 2024-25	
1	Course Code	MBSC-08	P		
2	Course Title	Lab. Course - MBSC-08			
3	Course Type	Laborator	Laboratory Course		
4	Prerequisite (If Any)	As per Program			
5	Course Learning Outcomes (CLO)	At the end of this course the student will able to – > define ecological factors affecting microbial growth > compare diversity of microorganisms in different habitats > explain microbiological quality of water > identify microbial interactions			
6	Credit Value	1 Credit Credit = 30 Hours. Laboratory or Field learning/Training			
7	Total Marks	Max. Marks: 50		Min. Passing marks: 20	
-W- / VY					

PART - B: Content of the Course

Total No. of learning-Training/Performance Periods: 30 Periods (30 Hours)

Module	Topics (Course contents)	No. of Period
Lab./ Field	1. Analysis of soil for pH, moisture content	
Training/	2. Isolation of microbes (bacteria & fungi) from rhizosphere and rhizoplane	
Experiment	3. Assessment of microbiological quality of water by presumptive test/MPN test	
contents of	4. Confirmed and Completed tests for faecal coliforms	
Course	5. Determination of BOD of wastewater sample	30
	6. Study of biological interactions (Competition, Parasitism)	
a	7. Isolation of Rhizobium from root nodules.	
	8. Study the Effect of salt concentration/ pH on growth of microbes	
	9. Demonstration of Winogradsky's Column Preparation	
Key Words	Soil microflora, Water microflora, Aeromicroflora, Extremophiles, microbial inte	eractions

PART – C: Learning Resources

Text Books, Reference Books and Others

Text Books Recommended:

- 1. Laboratory Manual of Microbiology and Biotechnology; Aneja K. R
- 2. Practical Microbiology, R. C. Dubey and D. K. Maheshwari.
- 3. Laboratory Manual in Microbiology. By P. Gunasekaran.

Online Resources:

- https://books.google.co.in/books?id=Wh9OTbjcsfUC&printsec= age&q&f=false
- https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SMB2101.pdf

PART - D: Assessment and Evaluation

Suggested Continuous Evaluation Methods:

Maximum Marks:

50 Marks

Continuous Internal Assessment (CIA): 15 Marks

35 Marks End Semester Exam (ESE): Internal Test/ Quiz - (2): **Continuous Internal**

Assignment/ Seminar + Attendance: 05 Assessment (CIA): Total Marks: (By Course Teacher) Laboratory/ Field Skill Performance: On spot Assessment **End Semester Exam** A. Performed the Task based on lab. work-20 Marks

Better Marks out of the two Test/ Quiz + obtained marks in Assignment shall be considered against 15 Marks

(ESE):

B. Spotting based on tools & technology (written) - 10 Marks

10 & 10

Viva-voce (based on principle/ technology) -05 Marks

Managed by course teacher as per lab. status

Name and Signature of Convener and Members of CBoS