FOUR YEAR UNDERGRADUATE PROGRAM (2024 – 28) DEPARTMENT OF MICROBIOLOGY **COURSE CURRICULUM**

PART	PART – A: Introduction				
Program: Bachelor in Life Science (Diploma/Degree/Honors)		Semester - III		v	Session: 2024-25
1	Course Code	MBSC-03 T			
2	Course Title	Cell Biology and Biochemistry			
3	Course Type	DSC			
4	Prerequisite (If Any)	As per program			
5	Course Learning	At the end of this course, the student will able to –			
	Outcomes (CLO)	 illustrate the structural organization of eukaryotic and prokaryotic cells interpret cell division classify the biomolecules and compare their characteristics relate structure and functions of nucleic acids interpret the mechanism of enzyme action 			
6	Credit Value	03 Credits	Credit = 15 Hours - Learning & Observation		
7	Total Marks	Max. Marks: 10	0	Mir	nimum Passing marks: 40

PART - B: **Content of the Course**

Total No. of Teaching-Learning Periods (01 Hr. per period) - 45 Periods (45 Hours)

Unit	Topics (Course contents)			
I	History of Cell Biology: Contribution of Indian Cell biologists and Biochemists: Ramakrishnan Nagaraj, Joyoti Basu, Veena Krishnaji Parnaik. Cell Structure: Prokaryotic and Eukaryotic cell, cellular organelles; Plasma membrane, Mitochondria, Golgi body, Nucleus, Ribosome, Lysosome, Endoplasmic reticulum. Cell division.			
Ш	Carbohydrate: Structure, properties & classification of carbohydrates; Monosaccharides, Disaccharides and Polysaccharides. Proteins: Structure, properties & classification of amino acids. Structure & Classification of Protein- Primary, secondary; salient of α helix, β sheet, tertiary and quaternary.			
III	Lipid: Structure, properties and classification of lipids. Nucleic acids: Structure of purine and pyrimidine bases, nucleoside and nucleotide; DNA structure and types: A, B, Z form; RNA - Structure, types and functions.			
IV	Enzymes: Classification of enzymes, mechanisms of enzyme action; Lock and key hypothesis, induced fit hypothesis. Active site and activation energy, coenzyme, Isoenzyme, metal cofactors.; Allosteric enzymes. Enzyme inhibition; competitive, noncompetitive, uncompetitive.			
Key Words Cell structure, Carbohydrates, Protein, Lipids, Enzymes, DNA, RNA				

Name and Signature of Convener and Members of CBoS

10/6/24 Rashmi 12 24 10.6.24 10.6.24 20.6.24 20.6.24

Part - C: Learning Resources

Text Books, Reference Books and Others

Text Books Recommended:

- 1. Cell and molecular biology; P. K. Gupta
- 2. Cell biology; C B Pawar
- 3. Biochemistry; U Satyanarayan and U Chakrapani
- 4. Fundamentals of Biochemistry; J L Jain, Sanjay Jain and Nitin Jain

- 1. Lehninger's principles of Biochemistry; M.M. Cox, D. L. Nelson and W H'Freeman.
- Quick Review Biochemistry; Arun Kumar Singhal, AITBS Pub. India

Online Resources - e-Resources/ e-Books and e- learning portals

- https://www.khanacademy.org/science/biology/structure-of-a-cell
- https://microbenotes-com.webpkgcache.com/doc/-/s/microbenotes.com/carbohydrates-classificationstructure-functions/
- https://microbenotes.com/carbohydrates-structure-properties-classification-and-functions/
- https://www.onlinebiologynotes.com/classification-of-protein-on-the-basis-of-structure-composition-andfunction/

Part- D: Assessment and Evaluation

Suggested	Continuous	Evaluation	Methods:
-----------	------------	-------------------	----------

Maximum Marks:

100 Marks

Continuous Internal Assessment (CIA):

30 Marks

End Semester Exam (ESE):

70 Marks

Continuous Internal

Internal Test / Quiz - (2): 20+20

Assignment/ Seminar -10 Better marks out of the two Test/ Quiz

Assessment (CIA):

+ obtained marks in Assignment shall be

(By Course Teacher)

30 Total Marks -

considered against 30 Marks

End Semester

Exam (ESE):

Two Section - A & B

Section A: Q1. Objective $10 \times 1 = 10 \text{ Mark}$; Q2. Short answer type $-5 \times 4 = 20 \text{ Marks}$

Section B: Descriptive answer type qts., 1 out of 2 from each unit -4X10 = 40 Marks

Name and Signature of Convener and Members of CBoS

FOUR YEAR UNDERGRADUATE PROGRAM (2024 - 28) DEPARTMENT OF MICROBIOLOGY **COURSE CURRICULUM**

PAR	Γ-A: Introduct	tion		A	9
	am: Bachelor in Life Science (Diploma/Degree/Honors)		Semester 1	III	Session: 2024-25
1	Course Code	MBSC - 03 P			
2	Course Title	Lab. Course	- MBSC-03		e e
3	Course Type	Laboratory Course			
4	Prerequisite (If Any)	As per program			
5	Course Learning Outcomes	At the end of this course, students will be able to –			
100	(CLO)	identify the various stages of cell division			
		quantify the carbohydrates and protein in any sample			
340		determine the Vmax and Km value of enzymes			
		> analyse the effect of environmental factors on enzyme activity.			
6	Credit Value	1 Credit Credit = 30 Hours. Laboratory or Field learning/Training			or Field learning/Training
7	Total Marks	Max. Marks: 50		Min. Passing marks: 20	

PART – B: Content of the Course

Total No. of learning-Training/Performance Periods: 30 Periods (30 Hours)

Module	Topics (Course contents)		
Lab./ Field	1. Identification of different stages of mitosis in onion root tips.		
Training/	2. Staining and visualisation of mitochondria by Janus green stain.	*4	
Experiment	3. Qualitative tests for carbohydrates, reducing sugars, non-reducing sugars.	Sec. 1	
contents of Course	4. Qualitative tests for lipids and proteins.	30	
0 6	5. Quantitative estimation of proteins by Folin Lawry method.	30	
	6. Study of protein secondary and tertiary structures with the help of models.		
	7. Study of enzyme kinetics – calculation of Vmax, Km values.		
	8. Study effect of temperature, pH and heavy metals on enzyme activity.		

PART – C: Learning Resources

Text Books, Reference Books and Others

Books Recommended:

- 1. Practical microbiology: R C Dubey and D K Maheshwari.
- 2. An introduction to practical biochemistry: David T Plummer.
- 3. Basic concepts in clinical Biochemistry: A practical guide: Vijay Kumar, Kiran Dip Gill

Online Resources:

- https://www.youtube.com/watch?v=hqbt7wtznrs
- https://www.youtube.com/watch?v=QacQmS3aaTI

PART - D: Assessment and Evaluation

Suggested Continuous Evaluation Methods: Maximum Marks: 50 Marks Continuous Internal Assessment (CIA): 15 Marks End Semester Exam (ESE): 35 Marks

Internal Test/ Quiz – (2): 10 & 10 Better Marks out of the two Test/ Quiz Continuous Internal Assignment/ Seminar + Attendance: 05 Assessment (CIA): + obtained marks in Assignment shall be (By Course Teacher) Total Marks -15 considered against 15 Marks **End Semester Exam** Laboratory/ Field Skill Performance: On spot Assessment Managed by A. Performed the Task based on lab. work-20 Marks

(ESE):

B. Spotting based on tools & technology (written) - 10 Marks Viva-voce (based on principle/ technology) -

course teacher as per lab. status

Name and Signature of Convener and Members of CBoS