FOUR YEAR UNDERGRADUATE PROGRAM (2024 – 28) DEPARTMENT OF ZOOLOGY COURSE CURRICULUM | | | | MENT OF ZOOLO
SE CURRICULUM | GY | | | |---|---|--|---|--|------------------|--| | P | ART- A: | ntroductio | n | , | | | | | ogram: Bachelor in | Life Science | Semester - VI | Session: 2024-20 |)25 | | | 1 | Course Code | ZOSE-04T | | | | | | 2 | Course Title | Evolutionary Biology | | | | | | 3 | Course Type | urse Type Discipline Specific Elective | | | | | | 4 | Pre-requisite (if, any) | y) As per Program | | | | | | 5 | Course Learning. Outcomes (CLO) | After successfully completing this course the students will be able to- Understanding the historical concept of Evolution. Develop an understanding on the Evolutionary Concept and theories in evolution. Understanding on the different interacting evolutionary process by various examples. Learn animal phylogeny and adaptations. Develop an interest in the debates and discussion taking place in the field of evolutionary biology. | | | | | | 6 | Credit Value | | | | | | | 7 | Total Marks | | | | | | | PA | | nt of the Co | ourse
Periods (01 Hr. per peri | od) - 45 Periods (45 Ho | ırs) | | | Ur | | | | | No. of
Period | | | Historical review of evolutionary concept: Evidences in favor of Evidences from morphology and comparative anatomy (Homology, Anal Vestigial organs), Evidences from Paleontology, Connecting Links, Emb Taxonomy, Cytology, Biochemistry & physiology and from Genetics. The Evolution: Lamarckism, Neo-Lamarckism and Darwinism (Basic Postu Darwinism, Supplementary theories of Darwin, Support & Criticism of Dar Modern Synthetic theory of Evolution: Gene and Chromosomal Mutation. | | | omology, Analogy and
ng Links, Embryology,
n Genetics. Theories of
n (Basic Postulates of
Criticism of Darwinism) | 12 | | | | Ī | I Evolutionary force
founder's effect, the
Molecular clock (emechanism of isolate | es: Natural Selectorial Selectoria Selectorial Selecto | ction, Genetic variation, Comenon), Gene Migration n gene family) rRNA/cyt | Genetic drift (mechanism, a. Hardy-Weinberg Law, at c). Isolation: Pattern & | 11 | | | I | Morphological, B
Categories: Geogr
Speciation: Phylet | iological, Geneti
aphical races, I
c speciation, Gra | mechanisms: Quantitative ical and phylogenetic spoemes, Clines, Ecological adual speciation: Allopatrics of speciation: Classical | ecies concept. Species
il races, Semi species,
c, sympatric, peripatric, | 11 | | Signature of Convener & Members (CBoS): IV A Company fossil. Geological Time Scale, Evolution of Man and Evolution of Horse. Founder flush speciation theory. Mimicry: Protective, Aggressive, Batesian & Mullerian mimicry and significance of mimicry, Aposematic coloration, Thanatosis, Extinctions: massextinctions (causes and effects), detailed example of K-T extinction. Basic patterns of Evolution: Micro & Macro Evolution. Phylogenetic Tree: Its construction and Interpretation. Fossils and fossilization, dating and significance of Homology, Analogy, Natural Selection, Genetic variation, Genetic drift, Speciation, Mimicry. and evolu 11 # PART-C: Learning Resources Text Books, Reference Books and Others #### Text Books Recommended - - Rastogi, Veerbala, Organic Evolution (2018). Third Revised Edition. MEDTECH. - > Singh, S.P., Tomar, B.S., Evolutionary Biology, Rastogi Publication - > Verma P.S., Agrawal V.K., Cell Biology, Genetics, Evolution & Ecology, S.Chand Publication Reference Books Recommended - - > Ridley, M. (2004). Evolution. III Edition. Blackwell Publishing - Barton, N. H., Briggs, D. E. G., Eisen, J. A., Goldstein, D. B. and Patel, N. H. (2007). Evolution. Cold Spring, Harbour Laboratory Press. - > Hall, B. K. and Hallgrimsson, B. (2008). Evolution. IV Edition. Jones and Bartlett - > Publishers. - Douglas, J. Futuyma (1997). *Evolutionary Biology*. Sinauer Associates. - > Campbell, N.A. and Reece J.B (2011) Biology (9th edition) Pearson, Benjamin, Cummings - De Robertis, E.D.P. and De Robertis, E.M.F. (2006) Cell and Molecular Biology (8thedition) Lippincott Williams and Wilkins, Philadelphia. ### Online Resources- - > Egyankosh- - > https://egyankosh.ac.in/bitstream/123456789/16425/1/Unit-10.pdf - > National Digital Library - > http://ndl.iitkgp.ac.in/he document/libretexts/libretexts/2f661e95fc3f32dd7204f7188addec22 ?e=17|EVOLUTION||| - > http://ndl.iitkgp.ac.in/he document/swayamprabha/swayam prabha/108mxiahue8?e=1|*||| ### **PART -D: Assessment and Evaluation** **Suggested Continuous Evaluation Methods:** Maximum Marks: 100 Marks Continuous Internal Assessment (CIA): 30 Marks 70 Marks End Semester Exam (ESE): Continuous Internal Internal Test / Quiz-(2): 20 +20 Better marks out of the two Test / Ouiz Assignment / Seminar -10 Assessment (CIA): + obtained marks in Assignment shall be Total Marks -30 considered against 30 Marks (By Course Teacher) Two section - A & B **End Semester** Exam (ESE): Section A: Q1. Objective $-10 \times 1 = 10 \text{ Mark}$; Q2. Short answer type- $5 \times 4 = 20 \text{ Marks}$ Section B: Descriptive answer type qts., 1 out of 2 from each unit-4x10=40 Marks Name and Signature of Convener & Members of CBoS: # FOUR YEAR UNDERGRADUATE PROGRAM (2024 – 28) ZOOLOGY COURSE CURRICULUM | Program: Bachelor in Life Science (Degree/Honors) Semester - VI Session: 2024 Course Code ZOSE-04P Course Title Evolutionary Biology Course Type Discipline Specific Elective Lab Course | 2025 | | | | | |---|--|--|--|--|--| | 2 Course Title Evolutionary Biology | | | | | | | Course Title Zvolutionary Zvology | | | | | | | 3 Course Type Discipline Specific Elective Lab Course | Evolutionary Biology | | | | | | - J - J - J - J - J - J - J - J - J - J | Discipline Specific Elective Lab Course | | | | | | 4 Pre-requisite (if, any) As per Program | As per Program | | | | | | Course Learning. Outcomes (CLO) Understanding on the process evolutionary biology by the stressome animals. Learn the different interacting evolutionary process by examples. Understand evolution through fossils Acquire an in-depth keeping. | Learn the different interacting evolutionary process by various examples. Understand evolution through fossils Acquire an in-depth knowledge on the diversity and relationships in animal world through | | | | | | 6 Credit Value 1 Credits Credit = 30 Hours Laboratory or Field learning | /Training | | | | | | 7 Total Marks Max. Marks: 50 Min Passing Marks | : 20 | | | | | | PART -B: Content of the Course | 27 | | | | | | Total No. of learning-Training/performance Periods: 30 Periods (30 Hou | | | | | | | Module Topics (Course contents) | No. of | | | | | | Study of homology (forelimbs, heart, brain in vertebrates) through model and charts. Study of Analogy (wings of insect, birds and bat) through models an charts. Study of Serial homology in appendages of <i>Palaemon</i>. Study of Virus, Euglena, Peripatus, Balanoglossus, Chimaera, Lung fish Archeopteryx, and Echidna on the basis of Evolution (connecting link). Study of adaptive radiations in vertebrates and mouth parts of insects. Exercise based on Hardy-Weinberg Law. Demonstration of role of natural selection and genetic drift in changing allele frequencies using simulation studies. Construction of phylogenetic trees and its interpretation. Phylogenetic tree of Man and Horse Study of fossils from models/pictures Preparation of Practical Record Group Discussion/Quiz/Seminar/Project on related topics. | 1 | | | | | | Keywords Evolution, Homology, Analogy, Phylogenetic tree, Adaptive radiation | | | | | | | Signature of Convener & Members (CBoS): | | | | | | Rahallon 1 W Daney #### PART-C: **Learning Resources** ## Text Books, Reference Books and Others #### Text Books Recommended - - Rastogi, Veerbala, Organic Evolution (2018). Third Revised Edition. MEDTECH. S.S. Lal, Practical Zoology, Invertebrate. 12th Edition Rastogi Publications, Meerut, - A manual of practical Zoology. Dr. P.S Verma, S. Chand Publication, New Delhi #### Reference Books Recommended - - Ridley, M. (2004). Evolution. III Edition. Blackwell Publishing - Barton, N. H., Briggs, D. E. G., Eisen, J. A., Goldstein, D. B. and Patel, N. H. (2007). - Evolution. Cold Spring, Harbour Laboratory Press. #### Online Resources- ### National Digital Library http://ndl.iitkgp.ac.in/he document/libretexts/3d7e9973648c332bee5336b05c6cf84f # PART -D: Assessment and Evaluation **Suggested Continuous Evaluation Methods:** **Maximum Marks:** 50 Marks Continuous Internal Assessment (CIA): 15 Marks End Semester Exam (ESE): 35 Marks C. Viva-voce (based on principle/technology) **Continuous Internal** Assessment (CIA): Internal Test / Quiz-(2): Assignment/Seminar +Attendance - 05 Better marks out of the two Test / Quiz (By Course Teacher) + obtained marks in Assignment shall be considered against 15 Marks Total Marks - 15 Managed by **End Semester** Exam (ESE): Laboratory / Field Skill Performance: On spot Assessment A. Performed the Task based on lab. work - 20 Marks Course teacher B. Spotting based on tools & technology (written) – 10 Marks as per lab. status - 05 Marks Name and Signature of Convener & Members of CBoS: Elahaller N John