FOUR YEAR UNDERGRADUATE PROGRAM (2024 - 28) **DEPARTMENT OF PHYSICS** COURSE CURRICULUM | | | Cours | E CURRICULUM | | | |--|--|---|--|---------------------------|--------| | PAR | T-A: INTRODUCT | TION | | | | | Program: Bachelor in Science (Honors/Honors with Research) | | | Semester - VII | Session: 2024-2 | 025 | | 1 | Course Code | PHSE- 06 | | | | | 2 | Course Title | Classical Electrodynamics & Electromagnetic Theory | | | | | 3 | Course Type | Discipline Specific Elective | | | | | 4 | Pre-requisite (if, any) | As per Program | | | | | 5 | Course Learning.
Outcomes (CLO) | Calculate the reflection and transmission of waves at the media interface. Understand the aspects related to Polarized lights and its generation as the superposition of different waves. Understanding the plasma state, the concept of Debye screening, and collective behavior | | | | | 6 | Credit Value | 4 Credits | Credit = 15 Hours - learning & Observation | | | | 7 | Total Marks | Max. Marks: | 100 | Min Passing Marks: 4 | 10 | | PART | | F THE COU | | | | | | Total No. of Teach | ing-learning Pe | eriods (01 Hr. per perio | d) – 60 Periods (60 Hours | 3) | | Unit | | Topio | es (Course Contents) | | No. of | | I | Maxwell Equations: Review of Maxwell's equations. Vector and Scalar Potentials. Maxwell's equations in terms of scalar and vector potentials. Concept of Gauge. Gauge Transformations: Lorentz and Coulomb Gauge; four-vectors, mathematical properties of space-time in special relativity; matrix representation of Lorentz transformation; Poynting Theorem and Poynting Vector. Electromagnetic (EM) Energy Density and Momentum Density. Radiation Pressure. Radiation by moving charges: Lienard-Wiechert potential and fields for a point charge; total power radiated by an accelerated charge- Larmor's formula and its relativistic generalization EM Wave Propagation in Unbounded: Transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance. Propagation through conducting media, skin | | | | 15 | | | EM Wave in Bounded & Refraction of plane was Refraction. Brewster's la | on of E.M. Waves in Anisotropic Dielectrics. Sounded Media: Boundary Conditions at Interface between two Media.Reflection plane waves at plane interface between two dielectric media-Laws of Reflection water's law. Total internal reflection, Metallic reflection (normal Incidence) | | | | | III | Polarization of Electromagnetic Waves: Description of Linear, Circular and Elliptical Polarization. Double Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extra – ordinary refractive indices. Phase Retardation Plates: Quarter-Wave and Half-Wave Plates. Babinet Compensator and its Uses. Optical Rotation. Fresnel's Theory of optical rotation. Specific rotation. Laurent's half-shadepolarimeter | | | | | | IV | Plasma: Definition, Debye Shielding phenomena and criteria for plasma, motion of charged particles in electromagnetic field, Uniform E and B fields, electric field drift, non-uniform magneto-static field, Gradient B drift, parallel acceleration and magnetic mirror effect, Elementary concepts of plasma kinetic theory, the Boltzmann equation, the basic plasma phenomena, plasma oscillations; Fundamental equations of magneto - hydrodynamics (MHD); Plasma confinement schemes | | | | 15 | | Reywords | Maxwell Equations,scalar
Polarization, Debye Shield
re of Convener & Memb | ing phenomena, ma | entials, Lienard-Wiechert
agnetohydrodynamics | potential, EM wave prop | | ## PART-C: Learning Resources ## Text Books, Reference Books and Others #### Text Books Recommended - - 1. Introduction to Electrodynamics, D.J. Griffiths, 3rd Ed., 1998, Benjamin Cummings. - 2. Elements of Electromagnetics, M.N.O. Sadiku, 2001, Oxford University Press. - 3. Introduction to Electromagnetic Theory, T.L. Chow, 2006, Jones & Bartlett Learning - 4. Electromagnetic Theory, Chopra & Agrawal, K. Nath Publishing - 5. Classical Electrodynamics J. D. Jackson, Wiley #### Reference Books Recommended - - 1. Electromagnetics, J.A. Edminster, Schaum Series, 2006, Tata McGraw Hill. - 2. Electromagnetic field theory fundamentals, B. Guru and H. Hiziroglu, 2004, Cambridge University Press - 3. Plasma Physics, Bittencourt - 4. Plasma Physics, Chen ### Online Resources – e-Resources / e-books and e-learning portals - 1. All e-books of physics https://www.e-booksdirectory.com/listing.php?category=2 - 2. Free physics textbook in PDF https://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAjkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoCILsQAvD_BwE - 3. Cambridge University Books for Physics https://www.cambridgeindia.org/ - 4. Books for solving physics problems https://bookboon.com/en/physics-ebooks - 5. NPTEL Online courses: https://onlinecourses.nptel.ac.in/noc21 ph05/preview - 6. https://archive.nptel.ac.in/courses/115/104/115104088/ - 7. Classical Electromagnetism 1 (Electrostatics) https://bsc.hcverma.in/course/cee1 - 8. Plasma Physics and Applicationshttps://onlinecourses.nptel.ac.in/noc24_ph20/preview #### PART -D: Assessment and Evaluation **Suggested Continuous Evaluation Methods:** Maximum Marks: 100 Marks Continuous Internal Assessment(CIA): 30 Marks End Semester Exam(ESE): 70 Marks Internal Test / Ouiz-(2): 20 & 20 Better marks out of the two Test / Quiz **Continuous Internal** Assignment / Seminar - 10 + obtained marks in Assignment shall be Assessment (CIA): Total Marks -30 (By Course Teacher) considered against 30 Marks Two section - A & B End Semester Exam Section A: Q1. Objective $-10 \times 1 = 10 \text{ Mark}$; Q2. Short answer type- 5x4 = 20 Marks(ESE): Section B: Descriptive answer type qts.,1 out of 2 from each unit-4x10=40 Marks Name and Signature of Convener & Members of CBoS: allul Ohnrey. Subper £ 10/6/14 (Le