FOUR YEAR UNDERGRADUATE PROGRAM (2024 – 28) DEPARTMENT OF PHYSICS COURSE CURRICULUM | Program: Bachelor in Science (Diploma / Degree/Honors) | | | Semester - III | Session: 2024-2025 | | | |--|-----------------------------------|---|---|-----------------------|--|--| | 1 | Course Code | PHSE-01 | | | | | | 2 | Course Title | Introduction to Statistical Mechanics | | | | | | 3 | Course Type | Discipline Specific Elective | | | | | | 4 | Pre-requisite (if, any) | As per Program | | | | | | 5 | Course Learning.
Outcomes(CLO) | Differentiate between macrostate and microstate and calculate the numbers Comprehend the concept of ensembles and its requirement in study of physical phenomenon Correlate and compare the classical and quantum statistical distribution laws. Apply concepts of statistical distribution laws for different physic systems. | | | | | | 6 | Credit Value | 4 Credits | Credit = 15 Hours -learning & Observation | | | | | 7 | Total Marks | Max. Marks: | 100 | Min Passing Marks: 40 | | | Total No. of Teaching-learning Periods (01 Hr. per period) – 60 Periods (60 Hours) | Unit | Topics (Course Contents) | | | |------|---|-----|--| | I | I Maxwellian Distribution of Speeds In An Ideal Gas: | | | | | Distribution of speeds and velocity, experimental verification, distinction between | | | | | mean, rms and most probable speeds, Doppler broadening of spectral lines, transport | | | | | phenomena in gases: molecular collision, collision cross section, estimates of | 15 | | | | molecular diameter and mean free path; transport of mass, momentum and energy | 15 | | | | and inter-relationship, dependence on temperature and pressure. | | | | | Behaviour of Real Gases :deviation from ideal gas equation, the Virial equation, | | | | | Andrew's experiment on CO ₂ gas; critical constants. | | | | II | Macrostate & Microstate | | | | | Macrostate, Microstate, Number of accessible microstates and Postulate of equal a | | | | | priori. | | | | | Concept of Ensemble: Concept of Gibb's ensemble, postulate of ensemble average, | 1.5 | | | | Micro Canonical, Canonical & Grand Canonical ensembles. Thermodynamic | 15 | | | | Probability, Postulate of Equilibrium and Boltzmann Entropy relation. Phase space, | | | | | Phase trajectory, Volume element in phase space, Quantization of phase space and | | | | | number of accessible microstates for free particle in 1D, free particle in 3D. | | | Jehn Jek (B) Durve mey. Sat Dewegn Maple Sout | III | Transition to quantum statistics: h as a natural constant and its implications, cases | | | | | |----------|--|----------|--|--|--| | | of particle in 1D and 1Dimensional harmonic oscillator, | | | | | | | Quantum Statistical Distribution Laws: In-distinguishability of particles and its consequences, Bose-Einstein & Fermi Dirac statistics. Comparison of statistical distribution laws and their physical significance. Canonical Distribution Law: Boltzmann's Canonical Distribution Law, Boltzmann's Partition Function, Proof of Equipartition Theorem (Law of Equipartition of energy) and relation between Partition function and Thermodynamic potentials. | 15 | | | | | IV | Bose-Einstein Distribution Law and its Applications: Bose-Einstein Statistics: | | | | | | | Heat capacity, Bose Einstein condensation, Radiation as a photon gas, Quantum | | | | | | | Theory of Radiation: Spectral Distribution of Black Body Radiation. Planck's | | | | | | | Quantum Postulates. Planck's Law of Blackbody Radiation: Deduction of (1) | | | | | | | Wien's Distribution Law, (2) Rayleigh-Jeans Law, (3) Stefan-Boltzmann Law, (4) | 15 | | | | | | Wien's Displacement law from Planck's law | 15 | | | | | | Fermi-Dirac Distribution Law and its Applications: Free electrons in a metal, | | | | | | | Definition of Fermi energy, Determination of Fermi energy at absolute zero, Kinetic | | | | | | | energy of Fermi gas at absolute zero and concept of Density of States, Specific Heat | | | | | | | of Metals (Density of Orbitals). | | | | | | Keywords | Macrostate & Microstate, ensemble, distribution laws, Bose-Einstein Statistics, Fern | mi-Dirac | | | | | | Statistics | | | | | Name and Signature of Convener & Members of CBoS: W ## PART-C:LEARNING RESOURCES ### Text Books, Reference Books and Others #### Text Books Recommended - - 1. Unified Physics –II, R P Goyal, Shivlal Agrawal & Sons Publication - 2. Unified Physics-II, Yugbodh Prakashan - 3. Unified Physics-II, Navbodh Prakashan ## Reference Books Recommended- - 1. F. Reif, "Statistical Physics (In SI Units): Berkeley Physics Course Vol 5", McGraw Hill, 2017 - 2. B.B. Laud, "Fundamentals of Statistical Mechanics", New Age International Private Limited, 2020 - 3. B.K. Agarwal, M. Eisner, "Statistical Mechanics", New Age International Private Limited, 2007 # Online Resources–e-Resources / e-books and e-learning portals - MIT Open Learning Massachusetts Institute of Technology, https://ocw.mit.edu/courses/8-333statistical-mechanics-i-statistical-mechanics-of-particles-fall-2013/ - National Programme on Technology Enhanced Learning (NPTEL), https://archive.nptel.ac.in/courses/115/103/115103113/, - https://onlinecourses.nptel.ac.in/noc19 ph10/preview, 3. - 4. https://archive.nptel.ac.in/courses/115/106/115106126/ - Uttar Pradesh Higher Education Digital Library, 5. http://heecontent.upsdc.gov.in/SearchContent.aspx - Swayam Prabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current he/8 # PART-D: ASSESSMENT AND EVALUATION **Suggested Continuous Evaluation Methods:** Maximum Marks: 100 Marks Continuous Internal Assessment(CIA): 30 Marks End Semester Exam (ESE): 70 Marks | End Semester Exam (ESI | 1). /U IVIAI KS | | | | | |------------------------|--|---------|---|--|--| | Continuous Internal | Internal Test / Quiz-(2): | 20 & 20 | Better marks out of the two Test / Quiz | | | | Assessment(CIA): | Assignment/Seminar- | | + obtained marks in Assignment shall be | | | | (By Course Teacher) | Total Marks - | 30 | considered against 30 Marks | | | | End Semester Exam | Two section – A & B | | | | | | (ESE): | Section A: Q1. Objective – $10 \times 1 = 10 \text{ Mark}$; Q2. Short answer type- $5 \times 4 = 10 \times 10^{-5}$ | | | | | | (222). | Section B: Descriptive answer type qts.,1out of 2 from each unit-4x10=40Marks | | | | | Sill Ohney Sid Davis Maple