FOUR YEARS UNDERGRADUATE PROGRAM (2024-28) DEPARTMENT OF PHYSICS COURSE CURRICULUM | | ogram: Bachelor in
(Degree/ Hono | 1 | Session: 2024-2 | 25 | | | |-----|-------------------------------------|---|-------------------------|--------|--|--| | 1 | Course Code | PHSC- | 06 T | | | | | 2 | Course Title | Solid State Physics and Solid State Devices | | | | | | 3 | Course Type | Discipline Specific Course | | | | | | 4 | Pre-requisite (if any) | As per Program | | | | | | 5 | Outcomes (CLO) | circuits. Understand the basic principles and industrial application of semiconductor diode, Zener diode and transistor Use diodes and transistors in electronic circuits Understand the construction working and applications of transistor Understand the construction and working principles of various instruments that are used in the physics laboratory Gain knowledge on importance of filter a circuit. Describe the | | | | | | 6 | Credit Value | working of oscillators 03 Credits 1 Credit = 15 Hou | rs- Learning & Observat | ion | | | | 7 | Total Marks | | Pass Marks:40 | .1011 | | | | PAI | RT – B: CONTENT | OF THE COURSE g-learning Periods (01 Hr. per period) | – 45 Periods (45 Hours) | | | | | Uni | t | Topics | | No. of | | | | | | | | | | | | | | | | Period | | | JA: SM M Juney . Sit Dewing Myble 10.06.21 | III | Opto-electronic devices | 10 | | | | | | | |-------|---|---------|--|--|--|--|--|--| | | Construction, working and applications of LEDs, Photodiode and Solar cell. | | | | | | | | | | Power Supply | | | | | | | | | | Half-wave Rectifier, Full-wave Rectifiers, Central-tapped and Bridge rectifier, | | | | | | | | | | Calculation of Ripple Factor and Rectification Efficiency, Zener diode as voltage | | | | | | | | | | regulator. Basic idea about capacitor filter, L-section filter and π -section filter. | | | | | | | | | IV | Transistors: | 12 | | | | | | | | | n-p-n and p-n-p Transistors. Characteristics of CB, CE and CC Configurations. Active, | | | | | | | | | | Cutoff, and Saturation Regions. Current gains α , β and γ . Relations between α , β and γ . | | | | | | | | | | Load Line analysis of Transistors. DC Load line and Q-point, FET, | | | | | | | | | | Bipolar transistor as amplifier: h-parameters (low frequency), h-parameter | | | | | | | | | | equivalent circuit (CE small signal amplifier), Classification of Amplifiers: Class A, B, | | | | | | | | | | and C | | | | | | | | | | Sinusoidal Oscillator | | | | | | | | | | Barkhausen's criterion for Self-sustained oscillations, Determination frequency of RC | | | | | | | | | | oscillator. Wein Bridge Oscillator, Hartley oscillator and Phase shift oscillator. | | | | | | | | | W | Crystalline solids, Miller indices, Bragg's law, semiconductors, Fermi level, j | unction | | | | | | | | Keywo | diodes, transistors, filter circuits, amplifiers, oscillators | | | | | | | | Signature of Convener & Members (CBoS): Muney. sid Dewaryon Miple 10.00 2 M #### PART – C: LEARNING RESOURCES ## Text Books, Reference Books and Others ### Text Books Recommended- - 1. Basic electronics (Solid state), B L Thareja - 2. Electronics: Fundamentals and Applications, D Chattopadhyay, PC Rakshit - 3. Basic Electronics A Simplified Approach, Raghunandan G. H, Chaithanya G. H. - 4. Basic Electronics, D.P. Kothari, I. Nagrath - 5. Integrated Electronics, J. Millman and C.C. Halkias, 1991, Tata Mc-Graw Hill. - 6. Electronic devices and circuits, S. Salivahanan and N. Suresh Kumar, 2012, Tata Mc-Graw Hill. ## Reference Books Recommended- - 1. Fundamentals of Solid State Physics by B.S. Saxena, R.C. Gupta, P.N. Saxena - 2. Solid State Physics by S.O. Pillai - 3. Semiconductor Physics and Devices by K. Purushothaman - 4. Electronic Devices and Circuits by S. Salivahanan, N. Suresh Kumar - 5. Optoelectronics and Optical Communication by B.P. Singh, Rekha Singh - 6. Basic Electronics and Linear Circuits by N.N. Bhargava, D.C. Kulshreshtha, S.C. Gupta - 7. Electronic Devices and Circuits by J.B. Gupta - 8. Principles of Electronics by V.K. Mehta, Rohit Mehta ## Online Resources (e-books/learning portals/other e-resources) - 1. https://nptel.ac.in/courses/122106025 - 2. https://archive.nptel.ac.in/courses/108/101/108101091/ - 3. http://www.digimat.in/nptel/courses/video/117103063/L31.html - 4. https://archive.nptel.ac.in/courses/117/103/117103063/ ## PART - D: ASSESSMENT AND EVALUATION ## **Suggested Continuous Evaluation Methods:** Maximum Marks: 100 Marks Continuous Internal Assessment (CIA): 30 Marks End Semester Examination (ESE) 70 Marks | | , , | | * | |---------------------------------------|--|----------|---| | Continuous Internal | Internal Test/ Quiz (2): | 20+20 | Better marks out of the two Test / Quiz | | Assessment (CIA): (By Course Teacher) | Assignment/ Seminar (1): Total Marks: | 10
30 | + marks obtained in Assignment shall be considered against 30 Marks | | End Semester
Exam (ESE): | flark; Q2. Short answer type- 5x4 =20 Marks at of 2 from each unit- 4x10 =40 Marks | | | Name and Signature of Convener & Members of CBoS: Ohney, Sidoewow Jan Males 10.06.24 # FOUR YEARS UNDERGRADUATE PROGRAM (2024 – 28) **DEPARTMENT OF PHYSICS COURSE CURRICULUM** | PA | RT – A | : INTRODU | CTION | | | | | | | |------------------------------|---|---|---|---|------------|-------------|---|---|--| | Program: Bachelor in Science | | | | 2 | Semeste | er: VI | Session: 2024- | 25 | | | (Degree/ Honors) | | | | | | | | | | | 1 | Course | Course Code PHSC- 06 P | | | | | | | | | 2 | Course | Title | Solid State Physics and Solid State Devices | | | | | | | | 3 | Course | Туре | Discipline Specific Course | | | | | | | | 4 | Pre-req | uisite (if any) | As per Program | | | | | | | | 5 | Course | Learning | After the completion of the course, the students are expected to: | | | | | | | | | Outcom | nes (CLO) | | Assemble required parts/devices and arrange them to perform | | | | | | | | | | | eriments. Re
ectives. | cord/ obs | serve data | as required by the expe | rimental | | | | | | | | ed data an | nd formula | ate it to get desired resul | ts. | | | | | | I | • | | | nment of proposed obje | | | | | | | ı | ted to theory | | | | | | | 1 | | | | | d princip | ole of semi | iconductors for various | device | | | | | | 1 1 | lications | /D O/D o | nd other o | haracteristics of various | | | | | | | | | | | s and interpret the pheno | | | | 6 | Credit ' | Value | 01 | 1 Credit = | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | Credit | | | | - | | | | 7 | Total M | larks | Maximu | m Marks: 5 | 0 N | Iinimum | Pass Marks: 20 | | | | PA | RT – B | : CONTENT | OF TH | E COURS | E | | | | | | | | Total No. of lea | arning-Tra | ining/perfor | mance P | eriods - 30 | 0 Periods (30 Hours) | | | | Sr. | | Objects (A | t least 10 | of the follow | ving or re | elated Ex | periments) | No. of | | | No. | | | | | | | | Periods | | | 1 | | | | | | | perature by four-probe | | | | | | od (room tempera | | | | | gap. | 30 | | | 2 | | termine the Hall | | | | | 102 1 | | | | 3 | | udy V-I characte | | | | | | | | | 4 | To study the V-I characteristics of a Zener diode and its use as voltage regulator. | | | | | | | | | | 5 | | Study of V-I & power curves of solar cells, and find maximum power point & | | | | | | | | | 6 | efficiency. To study the characteristics of a Bipolar Junction Transistor in CE configuration. | | | | | | | | | | 7 | To study the various biasing configurations of BJT for normal class A operation. | | | | | | | | | | 8 | To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider | | | | | | | | | | | bias. | | | | | | | | | | 9 | To study the frequency response of voltage gain of a RC-coupled transistor amplifier. | | | | | | | | | | 10 | To design and study a Wien bridge oscillator. | | | | | | | | | | 11 | | sign a phase shif | | | ecificatio | ns using I | BJT. | | | | 12 | To stu | udy the Colpitt`s | - 64,64 | | | | | | | | • | | Semiconductor Resistivity, Hall Coefficient, Diode Characteristics, Zener Diode | | | | | | Voltage | | | | | | | | | | * | • | | | Key | words: | | lar Cell I | Efficiency, 1 | | | acteristics, Zener Diode
Transistor (BJT), BJT | • | | Signature of Convener & Members (CBoS): ## PART - C: LEARNING RESOURCES ## Text Books, Reference Books and Others ## Text Books Recommended - 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House. - 2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers. - 3. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal - 4. Elements of Solid State Physics, J.P. Srivastava, 2nd Ed., 2006, Prentice-Hall of India. - 5. Practical Physics B.Sc III: R P Goyal, Shivlal Agrawal Publications ## Reference Books Recommended- - 1. Semiconductor Physics and Devices by Donald A. Neamen - 2. Electronic Devices and Circuit Theory by Robert L. Boylestad and Louis Nashelsky - 3. Microelectronic Circuits by Adel S. Sedra and Kenneth C. Smith - 4. Practical Electronics for Inventors by Paul Scherz and Simon Monk # Online Resources (e-books/ learning portals/ other e-resources) - 1. Virtual Lab: https://vlab.amrita.edu/?sub=1&brch=282 - 2. https://vlab.amrita.edu/index.php?sub=1&brch=282&sim=370&cnt=3 - 3. https://bop-iitk.vlabs.ac.in/exp/energy-band-gap/simulation.html - 4. http://vlabs.iitkgp.ac.in/ssd/index.html# - 5. http://vlabs.iitkgp.ac.in/psac/newlabs2020/ssds/# - 6. https://ae-iitr.vlabs.ac.in/List%20of%20experiments.html - 7. https://da-iitb.vlabs.ac.in/List%20of%20experiments.html ## PART - D: ASSESSMENT AND EVALUATION **Suggested Continuous Evaluation Methods:** Maximum Marks: 50 Marks Continuous Internal Assessment (CIA): 15 Marks End Semester Exam (ESE): 35 Marks | zna semester zxam (zs. | .,. 35 1016 | 31113 | | | |------------------------|---|-------------|------------------|---------------------| | Continuous Internal | Internal Test / Quiz-(2): | 10 & 10 | Better marks ou | t of the two Test / | | Assessment (CIA): | Assignment/Seminar + Attendance - 05 Quiz + Marks of | | | btained in | | (By Course Teacher) | Total Marks - 15 Assignment shall be | | ll be considered | | | | | | against 15 Mark | S | | End Semester | Laboratory Performance: O | ent | Managed by | | | Even /555). | Performed the Task based o | n lab. work | - 20 Marks | Course teacher | | Exam (ESE): | Spotting based on tools & technology (written) – 10 Marks | | | as per lab. | | | Viva-voce (based on principle/technology) - 05 Marks | | | | | | | | | status | Name and Signature of Convener & Members of CBoS: